Abstract

Cadmium (Cd) is a detrimental element that can be toxic to plants. The physiological and biochemical responses of plants to Cd stress have been extensively studied, but the molecular mechanisms remain unclear. The present study showed that Cd severely inhibited the growth of roots and shoots and reduced plant biomass of mung bean seedlings. To further investigate the gene profiles and molecular processes in response Cd stress, transcriptome analyses of mung bean roots exposed to 100 μM Cd for 1, 5, and 9 days were performed. Cd treatment significantly decreased global gene expression levels at 5 and 9 d compared with the control. A total of 6737, 10279, and 9672 differentially expressed genes (DEGs) were identified in the 1-, 5-, and 9-day Cd-treated root tissues compared with the controls, respectively. Based on the analysis of DEG function annotation and enrichment, a pattern of mung bean roots response to Cd stress was proposed. The processes detoxification and antioxidative defense were involved in the early response of mung bean roots to Cd. Cd stress downregulated the expressions of a series of genes involved in cell wall biosynthesis, cell division, DNA replication and repair, and photosynthesis, while genes involved in signal transduction and regulation, transporters, secondary metabolisms, defense systems, and mitochondrial processes were upregulated in response to Cd, which might be contributed to the improvement of plant tolerance. Our results provide some novel insights into the molecular processes for growth and adaption of mung bean roots in response to Cd and many candidate genes for further biotechnological manipulations to improve plant tolerance to heavy metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call