Abstract

BackgroundThe microsporidian Encephalitozoon cuniculi possesses one of the most reduced and compacted eukaryotic genomes. Reduction in this intracellular parasite has affected major cellular machinery, including the loss of over fifty core spliceosomal components compared to S. cerevisiae. To identify expression changes throughout the parasite’s life cycle and also to assess splicing in the context of this reduced system, we examined the transcriptome of E. cuniculi using Illumina RNA-seq.ResultsWe observed that nearly all genes are expressed at three post-infection time-points examined. A large fraction of genes are differentially expressed between the first and second (37.7%) and first and third (43.8%) time-points, while only four genes are differentially expressed between the latter two. Levels of intron splicing are very low, with 81% of junctions spliced at levels below 50%. This is dramatically lower than splicing levels found in two other fungal species examined. We also describe the first case of alternative splicing in a microsporidian, an unexpected complexity given the reduction in spliceosomal components.ConclusionsLow levels of splicing observed are likely the result of an inefficient spliceosome; however, at least in one case, splicing appears to be playing a functional role. Although several RNA decay genes are encoded in E. cuniculi, the lack of a few key players could be reducing decay levels and therefore increasing the proportion of unspliced transcripts. Significant proportions of genes are differentially expressed in the first forty-eight hours but not after, indicative of genetic changes that precede the intracellular to infective stage transition.

Highlights

  • The microsporidian Encephalitozoon cuniculi possesses one of the most reduced and compacted eukaryotic genomes

  • We found that transcripts have much longer untranslated regions (UTRs) and more transcription start sites in the spore stage compared to the intracellular stage

  • We found that E. cuniculi intron-containing genes have exclusively short 5'UTRs and that, on average, intracellular stage 5'UTR lengths are among the shortest known [11]

Read more

Summary

Introduction

The microsporidian Encephalitozoon cuniculi possesses one of the most reduced and compacted eukaryotic genomes. Reduction in this intracellular parasite has affected major cellular machinery, including the loss of over fifty core spliceosomal components compared to S. cerevisiae. Microsporidia possess among the smallest, most compact eukaryotic genomes known [1]. All microsporidia are intracellular parasites and alternate between a thickwalled, extracellular stage (spore) and intracellular stages (meronts, sporonts, and sporoblasts). E. cuniculi was the possess 30 spliceosomal proteins [3] Such reduced eukaryotes could hold important information about intron and spliceosome evolution as they harbor so few spliceosomal introns (less than 40), and some microsporidia are completely devoid of introns and splicing machinery [7,8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.