Abstract

PhoP was previously shown to be important for Yersinia pestis survival in macrophage and under macrophage-induced stresses. In this work, a phoP disruptant of Y. pestis 201 was generated using the Red cloning procedure. The transcription profile of the wild-type Y. pestis was then compared with that of the phoP mutant under Mg 2+-limiting conditions. It was revealed that PhoP/PhoQ governed a wide set of cellular pathways in Y. pestis, especially including the positive regulation of many metabolic processes, Mg 2+ transport, peptidoglycan remodeling, lipopolysaccharide (LPS) modification and various stress-protective functions. The Mg 2+ transport system regulated by PhoP may make Y. pestis to maintain the magnesium homeostasis under low Mg 2+ environments. The PhoP-controlled stress-protective functions likely constitute the molecular basis for the observation that mutation of the phoP gene rendered the bacteria more sensitive to various macrophage-induced stresses. Modification of LPS mediated by PhoP is hypothesized to not only neutralize negative charges as normally done by Mg 2+ ions, but also mediate the resistance of Y. pestis to antimicrobial peptides. The microarray results provide a population of candidate genes or pathways, and further biochemical experiments are needed to elucidate the PhoP-dependent mechanisms by which Y. pestis survives the antibacterial strategies employed by host macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.