Abstract

Epimedium koreanum is a perennial herb of the Berberidaceae family, which is a traditional tonic in Chinese medicine. Seed germination of E. koreanum is difficult. Dormancy is an intrinsic factor that affects seed germination. Elucidating the molecular mechanism of seed dormancy and the lifting process of E. koreanum is of great significance for the breeding, conservation, and utilization of E. koreanum. Previous studies have concluded that E. koreanum seed dormancy breakage requires warm-temperature stratification followed by low-temperature stratification treatments. Therefore, we performed transcriptome sequencing using freshly harvested, untreated seeds (NS), seeds that developed a cotyledonary embryo after 90 d of constant-temperature stratification at 15 °C (CS), and seeds that broke dormancy by 90 d of stratification at 15 °C and 60 d of stratification at 5 °C (ND) in order to find the responsive genes and regulatory genes that regulate dormancy. A total of 92,867 genes with differential expression were identified. GO enrichment analysis highlighted redox processes, as well as structural components of the nucleus and ribosomes. KEGG enrichment analysis revealed a significant enrichment of phytohormone signaling pathways, which play a crucial role in seed dormancy release. Additionally, protein–protein interactions (PPIs) were predicted with starch and sucrose metabolic pathways. This study introduces a novel concept for a more profound comprehension of the molecular regulatory mechanism of E. koreanum and lays a theoretical foundation for the screening of E. koreanum candidate genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call