Abstract

BackgroundNatural rubber is currently produced nearly exclusively from latex of the Para rubber tree, Hevea brasiliensis. The desire to reduce the environmental cost of rubber production, fears of pathogen susceptibility in clonal Hevea plantations, volatility in the price of natural rubber, and increasing labor costs have motivated efforts to diversify the supply of natural rubber by developing alternative rubber crops such as guayule (Parthenium argentatum Gray). In Hevea, latex is produced as an exudate following wounding while in guayule, rubber is deposited within the cortical parenchyma and its production is strongly influenced by environmental conditions.ResultsTo better understand the enzymology and regulation of guayule rubber biosynthesis and to identify genes with potential uses in the improvement of rubber yields, we conducted de novo transcriptome assembly and differential gene expression analyses of this process in guayule. This analysis supports a role for rubber in the defense against pathogens, identified new enzymes potentially involved in the biosynthesis of rubber as well as transcription factors specifically expressed in rubber-producing tissues.ConclusionsData presented here will be useful in the improvement of guayule as an alternative source of natural rubber and in better understanding the biosynthesis of this critical polymer. In particular, some of the candidate transcription factors are likely to control the rubber biosynthesis pathway and are good targets for molecular breeding or engineering of guayule plants with higher and more consistent production of rubber.

Highlights

  • Natural rubber is currently produced nearly exclusively from latex of the Para rubber tree, Hevea brasiliensis

  • To study changes in gene expression associated with the production of rubber we sought to establish inductive and repressive growth conditions for guayule rubber biosynthesis in the lab and to validate that changes in the expression of genes associated with rubber biosynthesis were induced

  • To validate the induction of rubber biosynthesis we extracted rubber particles from guayule plants exposed to simulated winter and summer conditions for six weeks (Fig. 1a, b)

Read more

Summary

Introduction

Natural rubber is currently produced nearly exclusively from latex of the Para rubber tree, Hevea brasiliensis. The desire to reduce the environmental cost of rubber production, fears of pathogen susceptibility in clonal Hevea plantations, volatility in the price of natural rubber, and increasing labor costs have motivated efforts to diversify the supply of natural rubber by developing alternative rubber crops such as guayule (Parthenium argentatum Gray). Natural rubber is a critical commodity currently produced from the latex of the Para rubber tree, Hevea brasiliensis. The desire to reduce the environmental cost of rubber production, fears of pathogen susceptibility in clonal Hevea plantations, volatility in the price of natural rubber on the commodities market, and increasing labor costs for Hevea rubber production motivate efforts to diversify the supply of natural rubber by developing alternative crops such as guayule (Parthenium argentatum Gray) and Russian dandelion (Taraxacum kok-saghyz). Guayule is a xerophytic perennial shrub in the Asteraceae that produces high quality natural rubber, was widely studied in the United States during World War II as part of the Emergency Rubber Project and is currently being developed as an alternative rubber crop

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.