Abstract

BackgroundHeterosis is a phenomenon in which hybrids exhibit superior performance relative to parental phenotypes. In addition to the heterosis of above-ground agronomic traits on which most existing studies have focused, root heterosis is also an indispensable component of heterosis in the entire plant and of major importance to plant breeding. Consequently, systematic investigations of root heterosis, particularly in reproductive-stage rice, are needed. The recent advent of RNA sequencing technology (RNA-Seq) provides an opportunity to conduct in-depth transcript profiling for heterosis studies.ResultsUsing the Illumina HiSeq 2000 platform, the root transcriptomes of the super-hybrid rice variety Xieyou 9308 and its parents were analyzed at tillering and heading stages. Approximately 391 million high-quality paired-end reads (100-bp in size) were generated and aligned against the Nipponbare reference genome. We found that 38,872 of 42,081 (92.4%) annotated transcripts were represented by at least one sequence read. A total of 829 and 4186 transcripts that were differentially expressed between the hybrid and its parents (DGHP) were identified at tillering and heading stages, respectively. Out of the DGHP, 66.59% were down-regulated at the tillering stage and 64.41% were up-regulated at the heading stage. At the heading stage, the DGHP were significantly enriched in pathways related to processes such as carbohydrate metabolism and plant hormone signal transduction, with most of the key genes that are involved in the two pathways being up-regulated in the hybrid. Several significant DGHP that could be mapped to quantitative trait loci (QTLs) for yield and root traits are also involved in carbohydrate metabolism and plant hormone signal transduction pathways.ConclusionsAn extensive transcriptome dataset was obtained by RNA-Seq, giving a comprehensive overview of the root transcriptomes at tillering and heading stages in a heterotic rice cross and providing a useful resource for the rice research community. Using comparative transcriptome analysis, we detected DGHP and identified a group of potential candidate transcripts. The changes in the expression of the candidate transcripts may lay a foundation for future studies on molecular mechanisms underlying root heterosis.

Highlights

  • Heterosis is a phenomenon in which hybrids exhibit superior performance relative to parental phenotypes

  • We found that the roots and aerial parts of Xieyou 9308 were more vigorous than those of either parent (Figure 1)

  • The Mid-parent heterosis (MPH) and heterosis (MPH) and best-parent heterosis (HPH) of root dry weight were greater than those of shoot dry weight at both stages, indicating that the level of heterosis was much higher in roots than in aerial parts

Read more

Summary

Introduction

Heterosis is a phenomenon in which hybrids exhibit superior performance relative to parental phenotypes. With the development of functional genomics, the technique of large-scale transcriptome analysis-based on cDNA or expressed sequence tag (EST) library sequencing, microarray hybridization, and serial analysis of gene expression (SAGE)-has been used to investigate heterosis in Arabidopsis [7,8], maize [9], and rice [10,11,12]. Such technologies offer the potential to unveil the molecular basis of heterosis at the transcriptional level [13,14]. Other than a transcriptome analysis of seedling shoots at the four-leaf stage [18], little effort is being expended in attempts to investigate heterosis using RNA-Seq

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.