Abstract

The potato is the third largest food crop, and nitrogen fertilizer is important for increasing potato yields; however, the shallow root system of potatoes causes the nitrogen fertilizer utilization rate to be low, which results in waste and environmental pollution, meaning that high nitrogen efficiency breeding is highly significant for potatoes. In the high nitrogen efficiency breeding of potatoes, genes with a nitrogen-deficient response should first be identified, and RNA-seq is an efficient method for identifying nitrogen-deficiency-response genes. In this study, two potato cultivars, Dongnong 322 (DN322) and Dongnong 314 (DN314), were utilized, and two nitrogen fertilizer application rates (N0 and N1) were set for both cultivars. Through the determination of physiological indicators, we identified that DN314 is more sensitive to nitrogen fertilizer, while DN322 is relatively insensitive to nitrogen fertilizer. Samples were taken at the seedling and tuber formation stage. At the seedling stage, DN322 and DN314 had 573 and 150 differentially expressed genes (DEGs), while at the tuber formation stage, they had 59 and 1905 DEGs, respectively. A total of three genes related to a low-nitrogen response were obtained via the combined analysis of differentially expressed genes (DEGs) and weighted correlation network analysis (WGCNA), of which two genes were obtained at the tuber formation stage and one gene in the seedling stage, providing theoretical guidance for the high nitrogen efficiency breeding of potatoes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call