Abstract
The ability to respond quickly and efficiently to transient extreme environmental conditions is an important property of all biota. However, the physiological basis of thermotolerance in different species is still unclear. Here, we found that the cot mutant showed a seizure phenotype including contraction of the body, rolling, vomiting gut juice and a momentary cessation of movement, and the heartbeat rhythm of the dorsal vessel significantly increases after hyperthermia. To comprehensively understand this process at the molecular level, the transcriptomic profile of cot mutant, which is a behavior mutant that exhibits a seizure phenotype, was investigated after hyperthermia (42°C) that was induced for 5 min. By digital gene expression profiling, we determined the gene expression profile of three strains (cot/cot ok/ok, +/+ ok/ok and +/+ +/+) under hyperthermia (42°C) and normal (25°C) conditions. A Venn diagram showed that the most common differentially expressed genes (DEGs, FDR<0.01 and log2 Ratio≥1) were up-regulated and annotated with the heat shock proteins (HSPs) in 3 strains after treatment with hyperthermia, suggesting that HSPs rapidly increased in response to high temperature; 110 unique DEGs, could be identified in the cot mutant after inducing hyperthermia when compared to the control strains. Of these 110 unique DEGs, 98.18% (108 genes) were up-regulated and 1.82% (two genes) were down-regulated in the cot mutant. KEGG pathways analysis of these unique DEGs suggested that the top three KEGG pathways were “Biotin metabolism,” “Fatty acid biosynthesis” and “Purine metabolism,” implying that diverse metabolic processes are active in cot mutant induced-hyperthermia. Unique DEGs of interest were mainly involved in the ubiquitin system, nicotinic acetylcholine receptor genes, cardiac excitation–contraction coupling or the Notch signaling pathway. Insights into hyperthermia-induced alterations in gene expression and related pathways could yield hints for understanding the relationship between behaviors and environmental stimuli (hyperthermia) in insects.
Highlights
Insects make up a substantial proportion of the global biota
Our results showed that unique differentially expressed genes (DEGs) of interest in the cot mutant that were induced after hyperthermia were involved in the ubiquitin system, nicotinic acetylcholine receptor genes, cardiac excitation– contraction coupling and the Notch signaling pathway
The Dazao larvae showed no cot/cot phenotype (File S2). These results indicated that temperature could induce the cot/cot epilepsy phenotype
Summary
Insects make up a substantial proportion of the global biota. Approximately 920,000 insect species have been described, which represent almost 85% of all known animal species [1]. To identify differentially expressed genes (DEGs) associated with hyperthermia in the cot mutant, we removed the DEGs that we identified in control strains, ok (+/+ ok/ok) and Dazao (+/+ +/+). Our results showed that unique DEGs of interest in the cot mutant that were induced after hyperthermia were involved in the ubiquitin system, nicotinic acetylcholine receptor genes, cardiac excitation– contraction coupling and the Notch signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.