Abstract

BackgroundPanax notoginseng (Burk.) F.H. Chen is one of the most highly valued medicinal plants in the world. The major bioactive molecules are triterpene saponins, which are also known as ginsenosides. However, its large genome size has hindered the assembly of a draft genome by whole genome sequencing. Hence, genomic and transcriptomic details about P. notoginseng, especially its biosynthetic pathways and gene expression in different parts of the plant, have remained largely unknown until now.ResultsIn this study, RNA sequencing of three different P. notoginseng tissues was performed using next generation DNA sequencing. After assembling the high quality sequencing reads into 107,340 unigenes, biochemical pathways were predicted and 9,908 unigenes were assigned to 135 KEGG pathways. Among them, 270 unigenes were identified to be involved in triterpene saponin biosynthesis. In addition, 350 and 342 unigenes were predicted to encode cytochrome P450s and glycosyltransferases, respectively, based on the annotation results, some of which encode enzymes responsible for the conversion of the triterpene saponin backbone into different ginsenosides. In particular, one unigene predominately expressed in the root was annotated as CYP716A53v2, which probably participates in the formation of protopanaxatriol from protopanaxadiol in P. notoginseng. The differential expression of this gene was further confirmed by real-time PCR.ConclusionsWe have established a global transcriptome dataset for P. notoginseng and provided additional genetic information for further genome-wide research and analyses. Candidate genes involved in ginsenoside biosynthesis, including putative cytochrome P450s and glycosyltransferases were obtained. The transcriptomes in different plant tissues also provide invaluable resources for future study of the differences in physiological processes and secondary metabolites in different parts of P. notoginseng.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1477-5) contains supplementary material, which is available to authorized users.

Highlights

  • IntroductionPanax notoginseng (Burk.) F.H. Chen is one of the most highly valued medicinal plants in the world

  • Sequencing and de novo assembly To study the transcriptomes of P. notoginseng, leaves, roots and flowers were collected from 3-year-old plants

  • We filtered out adapter sequences and reads that were shorter than 50 bp, and generated 5.8, 5.8 and 6.1 Gbp of high-quality (HQ) reads for leaves, roots and flowers, respectively

Read more

Summary

Introduction

Panax notoginseng (Burk.) F.H. Chen is one of the most highly valued medicinal plants in the world. P. notoginseng has been cultivated for about 400 years in China It was previously considered a variety of Panax pseudo-ginseng, P. notoginseng is present in several famous traditional Chinese medicinal products, such as Yunnan Bai Yao (a remedy for injury induced by trauma and bleeding) and Pian Zai Huang (a remedy for relieving pain and detoxification). It is famous for its haemostatic properties [2].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call