Abstract

Hybrid snakehead fish (Channa maculata ♀ × Channa argus ♂), a new species used in freshwater aquaculture in China, is the common host of an epizootic bacterial infection by Nocardia seriolae. However, the information on the functions and mechanisms of hybrid snakehead immune pathways with the N. seriolae infection is limited. Thus, the peripheral blood lymphocytes from hybrid snakehead were used for transcriptome analysis to understand the host immune response after challenge with N. seriolae. A total of 49,839,332 and 50,059,283 raw reads were obtained from the N. seriolae-challenged group (Ns group) and phosphate-buffered saline control group (Ctr group), respectively. The 75.50% and 74.25% reads from the Ns and Ctr groups were matched to reference genomic sequence after cleaning the raw reads, respectively. Additionally, there were 2892 significant differentially expressed genes (DEGs) among the 17,196 expressed genes between the Ns and Ctr groups, including 1387 upregulated and 1505 downregulated genes. All the DEGs were classified into three gene ontology categories, and 2502 DEGs had significant matches, which were allocated to 246 Kyoto Encyclopedia of Genes and Genomes pathways. Immune-related genes were detected from immune system pathways among the top 20 enriched pathways. Moreover, the regulation of several observed effective genes was confirmed by real-time quantitative polymerase chain reaction. Altogether, this study offers deep-sequence data of hybrid snakehead peripheral blood lymphocyte via transcriptome analysis and lays the foundation for further study on the immunogenetics of hybrid snakehead. Moreover, it provides insights into the pathogenic mechanism of N. seriolae, facilitating the prevention and treatment of fish nocardiosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call