Abstract

The Asian corn borer (Ostrinia furnacalis) is an important agricultural pest causing serious damage to economic crops, such as corn and sorghum. The gut is the first line of defense against pathogens that enter through the mouth. Staphylococcus aureus was used to infect the O. furnacalis midgut to understand the midgut immune mechanism against exogenous pathogens to provide new ideas and methods for the prevention and control of O. furnacalis. A sequencing platform was used for genome assembly and gene expression. The unigene sequences were annotated and functionally classified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Significant differences were found in the induced expression profiles before and after infection. Some differentially expressed genes have important relations with lipid metabolism and immune mechanism, suggesting that they play an important role in the innate immune response of O. furnacalis. Furthermore, quantitative real-time polymerase chain reaction assay was used to identify the key genes involved in the signaling pathway, and the expression patterns of these key genes were confirmed. The results could help study the innate immune system of lepidopteran insects and provide theoretical support for the control of related pests and the protection of beneficial insects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call