Abstract
Brucella spp. infect hosts primarily by adhering and penetrating mucosal surfaces, however the initial molecular phenomena of this host:pathogen interaction remain poorly understood. We hypothesized that characterizing the epithelial-like human HeLa cell line molecular response to wild type Brucella melitensis infection would help to understand the role of the mucosal epithelium at the onset of the Brucella pathogenesis. RNA samples from B. melitensis-infected HeLa cells were taken at 4 and 12 h of infection and hybridized in a cDNA microarray. The analysis using a dynamic Bayesian network modeling approach (DBN) identified several pathways, biological processes, cellular components and molecular functions altered due to infection at 4 h p.i., but almost none at 12 h p.i. The in silico modeling results were experimentally tested by knocking down the expression of MAPK1 by siRNA technology. MAPK1-siRNA transfected cell cultures decreased the internalization and impaired the intracellular replication of the pathogen in HeLa cells after 4 h p.i. DBN analysis provides important insights into the role of the epithelial cells response to Brucella infection and guide research to novel mechanisms identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.