Abstract

Simple SummaryThe growth and development of skeletal muscle determine the meat production performance of pigeons and are regulated by complex gene networks. To explore the genes involved in regulating the growth and development of pigeon skeletal muscle, RNA sequencing (RNA−seq) was used to characterise gene expression profiles during the development and growth of pigeon breast muscle and identify differentially expressed genes (DEGs) among different stages. This study expanded the diversity of pigeon mRNA, and it was helpful to understand the role of mRNA in pigeon muscle development and growth.The mechanisms behind the gene expression and regulation that modulate the development and growth of pigeon skeletal muscle remain largely unknown. In this study, we performed gene expression analysis on skeletal muscle samples at different developmental and growth stages using RNA sequencing (RNA−Seq). The differentially expressed genes (DEGs) were identified using edgeR software. Weighted gene co−expression network analysis (WGCNA) was used to identify the gene modules related to the growth and development of pigeon skeletal muscle based on DEGs. A total of 11,311 DEGs were identified. WGCNA aggregated 11,311 DEGs into 12 modules. Black and brown modules were significantly correlated with the 1st and 10th day of skeletal muscle growth, while turquoise and cyan modules were significantly correlated with the 8th and 13th days of skeletal muscle embryonic development. Four mRNA−mRNA regulatory networks corresponding to the four significant modules were constructed and visualised using Cytoscape software. Twenty candidate mRNAs were identified based on their connectivity degrees in the networks, including Abca8b, TCONS−00004461, VWF, OGDH, TGIF1, DKK3, Gfpt1 and RFC5, etc. A KEGG pathway enrichment analysis showed that many pathways were related to the growth and development of pigeon skeletal muscle, including PI3K/AKT/mTOR, AMPK, FAK, and thyroid hormone pathways. Five differentially expressed genes (LAST2, MYPN, DKK3, B4GALT6 and OGDH) in the network were selected, and their expression patterns were quantified by qRT−PCR. The results were consistent with our sequencing results. These findings could enhance our understanding of the gene expression and regulation in the development and growth of pigeon muscle.

Highlights

  • Pigeon meat is rich in nutrition, high in protein, low in fat, and high in medicinal value

  • Understanding the molecular regulation mechanism of pigeon skeletal muscle growth and development is an important prerequisite for improving meat production performance by molecular breeding technology [3]

  • Elucidating the molecular regulation mechanism of pigeon skeletal muscle growth and development is an essential prerequisite for using molecular breeding technology

Read more

Summary

Introduction

Pigeon meat is rich in nutrition, high in protein, low in fat, and high in medicinal value. In China, pigeon meat is called “animal ginseng” and is considered an advanced nourishment product that is increasingly favoured by consumers [1]. Meat production performance is an important index to measure the economic value of pigeons. The genetic improvement of the meat production performance of pigeons is relatively lagging in comparison with other poultry. The growth and development of skeletal muscle determine the meat production performance of pigeons [2]. Understanding the molecular regulation mechanism of pigeon skeletal muscle growth and development is an important prerequisite for improving meat production performance by molecular breeding technology [3]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call