Abstract

The ectoparasite protozoan Amyloodinium ocellatum (AO) is the etiological agent of amyloodiniosis in European seabass (Dicentrarchus labrax) (ESB). There is a lack of information about basic molecular data on AO biology and its interaction with the host. Therefore, de novo transcriptome sequencing of AO tomonts was performed. AO trophonts were detached from infested ESB gills, and quickly becoming early tomonts were purified by Percoll® density gradient. Tomont total RNA was processed and quality was assessed immediately. cDNA libraries were constructed using TruSeq® Stranded mRNA kit and sequenced using Illumina sequencer. CLC assembly was used to generate the Transcriptome assembly of AO tomonts. Out of 48,188 contigs, 56.12% belong to dinophyceae wherein Symbiodinium microadriaticum had 94.61% similarity among dinophyceae. Functional annotations of contigs indicated that 12,677 had associated GO term, 9005 with KEGG term. The contigs belonging to dinophyceae resulted in the detection of several peptidases. A BLAST search for known virulent factors from the virulence database resulted in hits to Rab proteins, AP120, Ribosomal phosphoprotein, Heat-shock protein70, Casein kinases, Plasmepsin IV, and Brucipain. Hsp70 and casein kinase II alpha were characterized in-silico. Altogether, these results provide a reference database in understanding AO molecular biology, aiding to the development of novel diagnostics and future vaccines.

Highlights

  • The ectoparasite protozoan Amyloodinium ocellatum (AO) is the etiological agent of amyloodiniosis, of which the European sea bass (Dicentrarchus labrax) is one of the many susceptible species

  • The raw FastQC file was deposited in the National Center for Biotechnology Information (NCBI)

  • Sequence Read Archive (SRA) database under the accession number SRX5567002 and Bio project accession number PRJNA528860. 48,188 of the cleaned contigs had a BLASTx hit against the nr database (Table 1)

Read more

Summary

Introduction

The ectoparasite protozoan Amyloodinium ocellatum (AO) is the etiological agent of amyloodiniosis, of which the European sea bass (Dicentrarchus labrax) is one of the many susceptible species. The trophont is the parasitic stage feeding directly from the host on gill and skin epithelia, to which it adheres by rizhoids [1,2]. In order to broaden the repertoire of molecular data, a de novo Transcriptome sequencing study of AO tomonts was performed. This approach to procuring information on the transcriptome of a parasite can help to discover some important genes and understand their molecular process during parasite development, reproduction, and host interactions, as well as identifying potential vaccine candidates and drug targets [6]. It was observed that the most abundant transcript in Ichthyophthirius multifiliis trophonts was stage-specific and most of the sequence was related to metabolic activates [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.