Abstract
Dosage compensation is a process that produces a similar expression of sex-linked and autosomal genes. In the silkworm Bombyx mori with a WZ sex-determination system, the expression from the single Z in WZ females matches that of ZZ males due to the suppression of Z-linked genes in males. A primary maleness determinant gene, Masculinizer (Masc), is also required for dosage compensation. In females, silkworm Piwi is complexed with the W chromosome-derived female-specific Feminizer (Fem) PIWI-interacting RNA (piRNA) and cleaves Masc mRNA. When Fem piRNA-resistant Masc cDNA (Masc-R) is overexpressed in both sexes, only female larvae are dead during the larval stage. In this study, transcriptome analysis was performed in neonate larvae to examine the effects of Masc-R overexpression on a global gene expression profile. Z-linked genes were globally repressed in Masc-R-overexpressing females due to force-driven dosage compensation. In contrast, Masc-R overexpression had little effect on the expression of Z-linked genes and the male-specific isoform of B. mori insulin-like growth factor II mRNA-binding protein in males, indicating that excessive Masc expression strengthens neither dosage compensation nor maleness in males. Fourteen genes were differentially expressed between Masc-R-overexpressing and control neonate larvae in both sexes, suggesting Masc functions other than dosage compensation and masculinization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.