Abstract
Lignin is an essential metabolite for plant growth but negatively affects the quality of forage barley. Genetic modification of quality traits to improve the forage digestibility requires an understanding of the molecular mechanism of lignin biosynthesis. RNA-Seq was used to quantify transcripts differentially expressed among leaf, stem and spike tissues from two barley genotypes. A total of 13,172 differentially expressed genes (DEGs) were identified, of which much more up-regulated DEGs were detected from the contrasting groups of leaf vs spike (L-S) and stem vs spike (S-S), and down-regulated DEGs were dominant in the group of stem vs leaf (S-L). 47 DEGs were successfully annotated to the monolignol pathway and six of them were candidate genes regulating the lignin biosynthesis. The qRT-PCR assay verified the expression profiles of the six candidate genes. Among them, four genes might positively regulate the lignin biosynthesis during forage barley development in terms of the consistency of their expression levels and changes of lignin content among the tissues, while the other two genes may have the reverse effects. These findings provide target genes for further investigations on molecular regulatory mechanisms of lignin biosynthesis and genetic resources for improvement of forage quality in barley molecular breeding programme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.