Abstract

Waterborne Benzo[a]pyrene (B[a]P) pollution is a global threat to aquatic organisms. The exposure to waterborne B[a]P can disrupt the normal locomotor behavior of zebrafish (Danio rerio), however, how it affect the locomotor behavior of adult zebrafish remains unclear. Herein, B[a]P at two concentrations (0.8 μg/L and 2.0 μg/L) were selected to investigate the molecular mechanisms of the affected locomotor behavior of zebrafish by B[a]P based on transcriptome profiling. Adverse effects of B[a]P exposure affecting locomotor behavior in zebrafish were studied by RNA sequencing, and the locomotion phenotype was acquired. The gene enrichment results showed that the differentially highly expressed genes (atp2a1, cdh2, aurka, fxyd1, clstn1, apoc1, mt-co1, tnnt3b, and fads2) of zebrafish are mainly enriched in adrenergic signaling in cardiomyocytes (dre04261) and locomotory behavior (GO:0007626). The movement trajectory plots showed an increase in the locomotor distance and velocity of zebrafish in the 0.8 μg/L group and the opposite in the 2.0 μg/L group. The results showed that B[a]P affects the variety of genes in zebrafish, including motor nerves, muscles, and energy supply, and ultimately leads to altered locomotor behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.