Abstract

Computational molecular generation methods that generate chemical structures from gene expression profiles have been actively developed for de novo drug design. However, most omics-based methods involve complex models consisting of multiple neural networks, which require pretraining. In this study, we propose a straightforward molecular generation method called GxRNN (gene expression profile-based recurrent neural network), employing a single recurrent neural network (RNN) that necessitates no pretraining for omics-based drug design. Specifically, our method utilizes the desired gene expression profile as input for the RNN, conditioning it to generate molecules likely to induce a similar profile. In a case study involving ten target proteins, GxRNN exhibited superior structural reproducibility of known ligands, surpassing several existing methods. This advancement positions our proposed method as a promising tool for facilitating de novo drug design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.