Abstract
A growing number of studies have examined transcriptional responses to sex steroids along the hypothalamic–pituitary–gonadal axis in teleost fishes. However, data are lacking on the molecular cascades that underlie progesterone signaling. The objective of this study was to characterize the transcriptional response in the ovary of fathead minnows (Pimephales promelas) in response to progesterone (P4). Fathead minnow ovaries were exposed in vitro to 500ng P4/L. Germinal vesicle migration and breakdown (GVBD) was observed and microarrays were used to identify gene cascades affected by P4. Microarray analysis identified 1702 differentially expressed transcripts after P4 treatment. Functional enrichment analysis revealed that transcripts involved in the molecular functions of protein serine/threonine kinase activity, ATP binding, and activity of calcium channels were increased after P4 treatment. There was an overwhelming decrease in levels of transcripts of genes that are structural constituents of ribosomes with P4 treatment. There was also evidence for gene expression changes in steroid and maturation-related transcripts. Pathway analyses identified cell cycle regulation, insulin action, hedgehog, and B cell activation as pathways containing an over-representation of highly regulated transcripts. Significant regulatory sub-networks of P4-mediated transcripts included genes regulated by tumor protein p53 and E2F transcription factor 1. These data provide novel insight into the molecular signaling cascades that underlie P4-signaling in the ovary and identify genes and processes that may indicate premature GVBD due to environmental pollutants that mimic progestins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.