Abstract

Thermal acclimation (acclimatization) capacity may be critical for determining how successfully an ectotherm can respond to temperature change, and adaptive shifts in gene expression may be pivotal for mediating these acclimatory responses. Using a cDNA microarray, we examined transcriptional profiles in gill tissue of a highly eurythermal goby fish, Gillichthys mirabilis, following 4 wk of acclimation to 9 degrees C, 19 degrees C, or 28 degrees C. Overall, gill transcriptomes were not strikingly different among acclimation groups. Of the 1,607 unique annotated genes on the array, only 150 of these genes (9%) were significantly different in expression among the three acclimation groups (ANOVA, false discovery rate < 0.05). Principal component analysis revealed that 59% of the variation in expression among these genes was described by an expression profile that is upregulated with increasing acclimation temperature. Gene ontology analysis of these genes identified protein biosynthesis, transport, and several metabolic categories as processes showing the greatest change in expression. Our results suggest that energetic costs of macromolecular turnover and membrane-localized transport rise with acclimation temperature. The upregulation of several classes of stress-related proteins, e.g., heat shock proteins, seen in the species' response to acute thermal stress was not observed in the long-term 28 degrees C-acclimated fish. The transcriptional differences found among the acclimation groups thus may reflect an acclimation process that has largely remedied the effects of acute thermal stress and established a new steady-state condition involving changes in relative energy costs for different processes. This pattern of transcriptional alteration in steady-state acclimated fish may be a signature of eurythermy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call