Abstract

During the fermentation process, yeast cells face different stresses, and their survival and fermentation efficiency depend on their adaptation to these challenging conditions. Yeast cells must tolerate not only a single stress but also multiple simultaneous and sequential stresses. However, the adaptation and cellular response when cells are sequentially stressed are not completely understood. To explore this, we exposed a multi-stress-tolerant strain (BT0510) to different consecutive stresses to globally explore a common response, focusing on the genes induced in both stresses. Gene Ontology, pathway analyses, and common transcription factor motifs identified many processes linked to this common response. A metabolic shift to the pentose phosphate pathway, peroxisome activity, and the oxidative stress response were some of the processes found. The SYM1, STF2, and HSP genes and the transcription factors Adr1 and Usv1 may play a role in this response. This study presents a global view of the transcriptome of a multi-resistance yeast and provides new insights into the response to sequential stresses. The identified response genes can indicate future directions for the genetic engineering of yeast strains, which could improve many fermentation processes, such as those used for bioethanol production and beverages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call