Abstract

BackgroundMicro algae’s are worldwide considered as an alternative source of proteins in diets for animals and humans. Micro algae also produce an array of biological active substances with potential to induce beneficial and health promoting effects. To better understand the mode of action of micro algae’s when applied as additive in diets, porcine intestinal epithelial cells (IPEC-J2), stressed by enterotoxigenic Escherichia coli (ETEC) or under non-stressed conditions, were exposed to micro algae extracts and changes in gene expression were recorded.MethodsIPEC-J2 cells were exposed for 2 and 6 h to extracts prepared from the biomass of the microalgae Chlorella vulgaris (C), Haematococcus pluvialis (H), Spirulina platensis (S), or a mixture of Scenedesmus obliques and Chlorella sorokiniana (AM), in the absence and presence of ETEC. Gene expression in cells was measured using porcine “whole genome” microarrays.ResultsThe micro algae extracts alone enhanced the expression of a set of genes coding for proteins with biological activity that are secreted from cells. These secreted proteins (hereafter denoted as effector proteins; EPs) may regulate processes like remodelling of the extracellular matrix, activation of an antiviral/bacterial response and oxygen homeostasis in the intestine and periphery. Elevated gene expression of immunostimulatory proteins CCL17, CXCL2, CXCL8 (alias IL8), IFNA, IFNL1, HMOX1, ITGB3, and THBS1 was observed in response to all four extracts in the absence or presence of ETEC. For several of these immunostimulatory proteins no elevated expression was observed when cells were exposed to ETEC alone. Furthermore, all extracts highly stimulated expression of an antisense RNA of the mitochondrial/peroxisome symporter SLC25A21 gene in ETEC-challenged cells. Inhibition of SLC25A21 translation by this antisense RNA may impose a concentration gradient of 2-oxoadipic and 2-oxoglutarate, both metabolites of fatty acid β-oxidation, between the cytoplasm and the interior of these organelles.ConclusionsExposure of by ETEC stressed intestinal epithelium cells to micro algae extracts affected “fatty acid β-oxidation”, ATP and reactive oxygen species production and (de) hydroxylation of lysine residues in procollagen chains in these cells. Elevated gene expression of specific EPs and immunostimulatory proteins indicated that micro algae extracts, when used as feed/food additive, can steer an array of metabolic and immunological processes in the intestines of humans and monogastric animals stressed by an enteric bacterial pathogen.

Highlights

  • Micro algae’s are worldwide considered as an alternative source of proteins in diets for animals and humans

  • Preparation and toxicity of micro algae extracts In a pilot experiment, dried biomass of all four micro algae cultures was suspended in IPEC-J2 culture medium to a concentration of 10% (w/v) and mechanically disrupted using an Ultra-Turrax® Tube Drive with beats

  • Inspection of the integrity of the IPEC-J2 monolayer and the morphology of IPEC-J2 cells using a microscope revealed that extracts with concentrations of biomass as low as ~ 0.001% w/v changed the morphology of the cells drastically and still induced detachment of cells from the monolayer

Read more

Summary

Introduction

Micro algae’s are worldwide considered as an alternative source of proteins in diets for animals and humans. Micro algae produce an array of biological active substances with potential to induce beneficial and health promoting effects. Micro algae’s are worldwide considered as an alternative source of proteins in diets for farm animal and humans. Besides many micro algae’s contain substantial amounts of proteins, they contain a high concentration of, often unique, biological and chemical substances with potential to induce beneficial and health promoting effects in humans and animals [2,3,4,5]. With regard to prophylactic effects, the antioxidant activity of carotenoids and flavonoids synthesised by micro algae’s have been studied intensively [8, 10,11,12,13,14,15]. When used as supplement in food, it is assumed that these xanthophyll’s contribute to the prevention of oxidative-stress related autoimmune diseases (e.g. atherosclerosis and rheumatoid arthritis) [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call