Abstract

BackgroundSeed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown.ResultsThe studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up-regulated by both GA and seed germination. Those genes and metabolic pathways are likely to be important parts of transcriptional regulatory networks underlying GA and ABA regulation of seed germination and seedling growth.ConclusionsThe studies developed a model depicting transcriptional regulatory programs underlying barley germination and GA and ABA regulation of germination at gene, pathway and systems levels, and established a standard transcriptome reference for further integration with various -omics and biological data to illustrate biological networks underlying seed germination. The studies also generated a great amount of systems biological evidence for previously proposed hypotheses, and developed a number of new hypotheses on transcriptional regulation of seed germination for further experimental validation.

Highlights

  • Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation

  • Transcriptional Regulatory Programs Underlying GA and abscisic acid (ABA) Regulation of Seed Germination We previously examined transcriptomes of isolated germinating barley aleurone treated with GA and ABA

  • Mature barley grains already accumulate a large number of transcripts, which are synthesized during seed development and maturation and preserved in mature grains

Read more

Summary

Introduction

Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Seed germination is a complex multi-stage developmental process important to plant development, plant evolution, and agricultural production. Germination begins with the uptake of water by dry quiescent seeds and ends with the visible emergence of an embryo tissue from its surrounding tissues. Dry seeds gradually lose stress tolerances, such as desiccation tolerance, over the course of seed germination. These combined biological activities transform a dehydrated and resting embryo with an almost undetectable metabolism into one with vigorous metabolism calumniating in growth [2,3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.