Abstract

Research in our laboratory is aimed at understanding the cellular and molecular mechanisms that govern colony stimulating factor-1 (CSF-1) gene expression. Our hypothesis is that a basal set of trans-acting factors is bound to the CSF-1 gene during fibroblast proliferation, resulting in constitutive CSF-1 gene expression. Modulation of CSF-1 gene transcription by growth-arrest (decrease) or stimulation of growth-arrested fibroblasts (re-initiate) is mediated by changes in the basal set of factors bound and/or by the addition of stimulus-specific factors. We have extended our hypothesis to include other cell types (monocytes) to determine if mechanisms used to control CSF-1 gene expression in fibroblasts are unique or represent common nontissue-specific regulatory mechanisms. Analysis of CSF-1-CAT reporter constructs in transiently transfected fibroblasts and monocytes was used to identify CSF-1 genomic sequences that affect transcriptional activity. DNase I protection, electrophoretic mobility shift, and methylation interference assays were used to identify the putative cis-acting elements. Results of our study suggest multiple trans-acting factors may regulate CSF-1 gene expression; some may be tissue specific, while others, such as AP1, CTF/NF1, Sp1, and Sp3, are shared in common.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.