Abstract
Nitric oxide reduction in Ralstonia eutropha H16 is catalysed by the quinol-dependent NO reductase NorB. norB and the adjacent norA form an operon that is controlled by the sigma(54)-dependent transcriptional activator NorR in response to NO. A NorR derivative containing MalE in place of the N-terminal domain binds to a 73 bp region upstream of norA that includes three copies of the putative upstream activator sequence GGT-(N(7))-ACC. Mutations altering individual bases of this sequence resulted in an 80-90% decrease in transcriptional activation by wild-type NorR. Similar motifs are present in several proteobacteria upstream of genes encoding proteins of NO metabolism. The N-terminal domain of NorR contains a GAF module and is hypothesized to interact with a signal molecule. A NorR derivative lacking this domain activates the norAB promoter constitutively. Amino acid exchanges within the GAF module identified a cysteine residue that is essential for promoter activation by NorR. Signal sensing by NorR is negatively modulated by the iron-containing protein NorA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.