Abstract

IntroductionExtracellular matrix (ECM) turnover is controlled by the synthetic rate of matrix proteins, including type I collagen, and their enzymatic degradation by matrix metalloproteinases (MMPs). Fibrosis is characterized by an unbalanced accumulation of ECM leading to organ dysfunction as observed in systemic sclerosis. We previously reported that proteasome inhibition (PI) in vitro decreases type I collagen and enhances MMP-1 production by human fibroblasts, thus favoring an antifibrotic fibroblast phenotype. These effects were dominant over the pro-fibrotic phenotype induced by transforming growth factor (TGF)-β. Here we investigate the molecular events responsible for the anti-fibrotic phenotype induced in fibroblasts by the proteasome inhibitor bortezomib.MethodsThe steady-state mRNA levels of COL1A1, COL1A2, TIMP-1, MMP-1, and MMP-2 were assessed by quantitative PCR in human dermal fibroblasts cultured in the presence of TGF-β, bortezomib, or both. Transient fibroblast transfection was performed with wild-type and mutated COL1A1 and MMP-1 promoters. Chromatin immunoprecipitation, electrophoretic mobility shift assay (EMSA), and DNA pull-down assays were used to assess the binding of c-Jun, SP1, AP2, and Smad2 transcription factors. Immunoblotting and immunofluorescent microscopy were performed for identifying phosphorylated transcription factors and their cellular localization.ResultsBortezomib decreased the steady-state mRNA levels of COL1A1 and COL1A2, and abrogated SP1 binding to the promoter of COL1A2 in both untreated and TGF-β-activated fibroblasts. Reduced COL1A2 expression was not due to altered TGF-β-induced Smad2 phosphorylation, nuclear translocation, or binding to the COL1A2 promoter. In contrast to collagen, bortezomib specifically increased the steady-state mRNA levels of MMP-1 and enhanced the binding of c-Jun to the promoter of MMP-1. Furthermore, disruption of the proximal AP-1-binding site in the promoter of MMP-1 severely impaired MMP-1 transcription in response to bortezomib.ConclusionsBy altering the binding of at least two transcription factors, c-Jun and SP1, proteasome inhibition results in increased production of MMP-1 and decreased synthesis of type I collagen in human dermal fibroblasts. Thus, the antifibrotic phenotype observed in fibroblasts submitted to proteasome inhibition results from profound modifications in the binding of key transcription factors. This provides a novel rationale for assessing the potential of drugs targeting the proteasome for their anti-fibrotic properties.

Highlights

  • Extracellular matrix (ECM) turnover is controlled by the synthetic rate of matrix proteins, including type I collagen, and their enzymatic degradation by matrix metalloproteinases (MMPs)

  • By altering the binding of at least two transcription factors, c-Jun and SP1, proteasome inhibition results in increased production of MMP-1 and decreased synthesis of type I collagen in human dermal fibroblasts

  • Proteasome inhibition abrogates the production of type I collagen induced by transforming growth factor-beta (TGF-β) We previously reported that proteasome inhibition (PI) decreases type I collagen and tissue inhibitor of matrix metalloproteinase (TIMP)-1 production in human dermal fibroblasts [21]

Read more

Summary

Introduction

Extracellular matrix (ECM) turnover is controlled by the synthetic rate of matrix proteins, including type I collagen, and their enzymatic degradation by matrix metalloproteinases (MMPs). We previously reported that proteasome inhibition (PI) in vitro decreases type I collagen and enhances MMP-1 production by human fibroblasts, favoring an antifibrotic fibroblast phenotype. These effects were dominant over the pro-fibrotic phenotype induced by transforming growth factor (TGF)-β. TGF-β-mediated increase in the production of type I collagen results from increased binding of transcription factors to three GC-rich SP1 sites (in the -303/-271 region) and one activation protein-1 (AP-1) site (-265/-241) within the COL1A2 promoter [9]. Smad2/3 signaling molecules induced by TGF-β [10] bind to the SP1 consensus sequence in the COL1A2 promoter region. Smad2/3 interacts with the transcriptional co-activators p300/CREB-binding protein (CBP), which enhance both basal and TGF-βinduced COL1A2 promoter activity [11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.