Abstract
Increased major histocompatibility complex (MHC) class I gene expression in nonimmune cell 'target tissues' involved in organ-specific diseases may be important in the pathogenesis of autoimmune diseases. This possibility in part evolves from studies of cultured thyrocytes where properties appear relevant to the development of thyroid autoimmune disease. In FRTL-5 rat thyroid cells in continuous culture, hormones and growth factors that regulate cell growth and function specifically decrease MHC class I gene expression. We hypothesized that this could reflect a mechanism to preserve self-tolerance and prevent autoimmune disease. The mechanisms of action of some of these hormones, namely TSH and hydrocortisone, have been already characterized. In this report, we show that IGF-I transcriptionally downregulates MHC class I gene expression and that its action is similar to that of insulin. The two hormones have a complex effect on the promoter of the MHC class I gene, PD1. In fact, they decrease the full promoter activity, but upregulate the activity of deleted mutants that have lost an upstream, tissue-specific regulatory region but still retain the enhancer A region. We show that insulin/IGF-I promotes the interactions of the p50/p65 subunits of NF-kappaB and AP-1 family members with these two regions, and that the tissue-specific region acts as a dominant silencer element on insulin/IGF-I regulation of promoter activity. These observations may be important to understand how MHC class I gene transcription is regulated in the cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.