Abstract

L-type calcium channel (LTCC) activity in the brain is mediated by 2 subtypes, Ca(v)1.2 and Ca(v)1.3. The individual contributions of these LTCC subtypes to the long-term pharmacological and behavioral effects of nicotine are unknown. Using quantitative in situ hybridization, we examined expression levels of Ca(v)1.2 and Ca(v)1.3 in forebrain regions of mice treated with nicotine (0.175 mg/kg) or saline for 1 or 14 days and sacrificed 24 hr or 7 days following the last injection. Additionally, we treated mice with nicotine for 14 days and then administered the nonspecific LTCC antagonist nifedipine twice daily during a 7-day abstinence period prior to testing for nicotine sensitization to determine the effect of LTCC blockade on sensitization. Ca(v)1.2 mRNA was unaffected 24 hr following a single nicotine exposure, whereas Ca(v)1.3 mRNA was upregulated in several brain regions. Following 14 days of nicotine treatment and 24 hr of abstinence, Ca(v)1.2 mRNA was downregulated throughout the areas examined, whereas Ca(v)1.3 mRNA had mostly returned to control values. Following 7 days of abstinence, a strong upregulation of Ca(v)1.2 transcripts was observed, whereas Ca(v)1.3 mRNA was largely unaffected. In our sensitization study, nifedipine administered during nicotine abstinence impaired subsequent nicotine sensitization. Our data suggest a differential involvement of Ca(v)1.2 and Ca(v)1.3 in nicotine-related processes. Ca(v)1.3 seems to be involved primarily during early exposure to nicotine. Ca(v)1.2 appears to play a role in the long-term molecular and behavioral changes that occur following chronic nicotine and abstinence. Nifedipine may counteract those nicotine-induced alterations in LTCC activity to impair nicotine sensitization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call