Abstract
Disruption of lipid and carbohydrate homeostasis is an important factor in the development of prevalent metabolic diseases such as diabetes, obesity, and atherosclerosis. Therefore, small molecules that could reduce insulin dependence and regulate dyslipidemia could have a dramatic effect on public health. The grapefruit flavonoid naringenin has been shown to normalize lipids in diabetes and hypercholesterolemia, as well as inhibit the production of HCV. Here, we demonstrate that naringenin regulates the activity of nuclear receptors PPARα, PPARγ, and LXRα. We show it activates the ligand-binding domain of both PPARα and PPARγ, while inhibiting LXRα in GAL4-fusion reporters. Using TR-FRET, we show that naringenin is a partial agonist of LXRα, inhibiting its association with Trap220 co-activator in the presence of TO901317. In addition, naringenin induces the expression of PPARα co-activator, PGC1α. The flavonoid activates PPAR response element (PPRE) while suppressing LXRα response element (LXRE) in human hepatocytes, translating into the induction of PPAR-regulated fatty acid oxidation genes such as CYP4A11, ACOX, UCP1 and ApoAI, and inhibition of LXRα-regulated lipogenesis genes, such as FAS, ABCA1, ABCG1, and HMGR. This effect results in the induction of a fasted-like state in primary rat hepatocytes in which fatty acid oxidation increases, while cholesterol and bile acid production decreases. Our findings explain the myriad effects of naringenin and support its continued clinical development. Of note, this is the first description of a non-toxic, naturally occurring LXRα inhibitor.
Highlights
The liver is the hub of lipid and carbohydrate homeostasis [1]
We show that naringenin induces the activation of PPARa and PPARc ligandbinding domain (LBD) in GAL4-fusion protein reporters and induces peroxisome proliferator-activated receptors (PPARs) response element (PPRE) activity in Huh7.5 human hepatoma cells
The PPAR LBD is fused to the GAL4 DNA binding domain and expressed constitutively
Summary
The liver is the hub of lipid and carbohydrate homeostasis [1] Dysregulation of this homeostasis has been implicated in disease processes, such as atherogenesis, insulin resistance, and hypermetabolism [2,3]. Naringenin’s myriad effects suggest that the flavonoid may be targeting transcriptional regulation of metabolism through nuclear receptors (NRs), a family of ligand-activated transcription factors, which play a critical role in the regulation of lipid metabolism. Strengthening this hypothesis is the anecdotal report that naringenin binds to LXRa [14] and more recently, that the flavonoid induces PPRE activity in U-2OS cells [16]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.