Abstract
The role of Gli-similar 2 (Glis2) in hepatic fibrosis (HF) is controversial. In this study, we focused on the functional and molecular mechanisms involved in the Glis2-mediated activation of hepatic stellate cells (HSCs)—a milestone event leading to HF. The expression levels of Glis2 mRNA and protein were significantly decreased in the liver tissues of patients with severe HF and in mouse fibrotic liver tissues as well as HSCs activated by TGFβ1. Functional studies indicated that upregulated Glis2 significantly inhibited HSC activation and alleviated BDL-induced HF in mice. Downregulation of Glis2 was found to correlate significantly with DNA methylation of the Glis2 promoter mediated by methyltransferase 1 (DNMT1), which restricted the binding of hepatic nuclear factor 1-α (HNF1-α), a liver-specific transcription factor, to Glis2 promoters. In addition, the enrichment of DNMT1 in the Glis2 promoter region was mediated by metastasis-associated lung adenocarcinoma transcriptor-1 (MALAT1) lncRNA, leading to transcriptional silencing of Glis2 and activation of HSCs. In conclusion, our findings reveal that the upregulation of Glis2 can maintain the resting state of HSCs. The decreased expression of Glis2 under pathological conditions may lead to the occurrence and development of HF with the expression silencing of DNA methylation mediated by MALAT1 and DNMT1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.