Abstract

We have cloned the promoter regions of the genes for the mouse and human γ2 subunits of the type A receptors for γ-aminobutyric acid (GABA). For the mouse, the two major transcription start sites were at +1 (by definition) and +43, as established by rapid amplification of cDNA ends (RACE) and primer extension. This numbering places the start methionine at +297. There was no TATA or CCAAT box. Both mouse and human sequences have a candidate neuron-restrictive silencer element (NRSE) site in the first intron (+956 in mouse). We made assorted mouse-based promoter/reporter (luciferase) constructs starting from a core extending from −331 to +136, varying sizes at both ends, and including and excluding the putative NRSE and more proximal sequences. These were tested by transient transfection in several neuron-like and non-neuronal cell lines. Both proximal and distal downstream elements appeared to help direct expression to neuron-like cells, the NRSE in the intron, by repression in non-neurons, and a 24-bp portion of the 5′ untranslated region starting at +113 (named GPE1) by preferentially promoting expression in neuron-like cells. Cotransfected human NRSF (transcription factor for NRSE) reduced reporter expression in neuron-like cells for constructs containing the NRSE in two locations. In gel mobility shift assays, the mouse γ2 NRSE and a consensus NRSE both bound in vitro translated NRSF very similarly, and the NRSF gave the same major shifted band with the mouse γ2 NRSE as was observed with nuclear extracts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.