Abstract

Salinity intrusion is one of the biggest problems in the context of sustainable agricultural practices. The major concern and challenge in developing salt-resistance in cultivated crops is the genetic complexity of the trait and lack of natural variability for stress-responsive traits. In this context, tomato wild relatives are important and have provided novel alleles for breeding abiotic stress tolerance including salt tolerance. We provide here a case study, involving tomato wild relative Solanum chilense and cultivated variety Solanum lycopersicum, carried out under high salt stress to investigate comparative transcriptional regulation mediating ROS homeostasis and other physiological attributes. Salt dependent oxidative stress in S. lycopersicum was characterized by a relatively higher H2O2 content, generation of O2•−, electrolytic leakage and lipid peroxidation whereas reduced content of both ascorbate and glutathione. On the contrary, the robust anti-oxidative system in the S. chilense particularly counteracted the salt-induced oxidative damages by a higher fold change in expression profile of defense-related salt-responsive genes along with the increased activities of anti-oxidative enzymes. We conclude that S. chilense harbours novel genes or alleles for salt stress-related traits that could be identified, characterized, and mapped for its possible introgression into cultivated tomato lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call