Abstract

Monascus azaphilone pigments, including red, orange, and yellow, are world-famous food colorants. However, the pigments produced by different Monascus species vary in yields and compositions. The underlying mechanism is unclear. In this study, four wild-type Monascus strains, namely M. anka M7, M. purpureus M9, M. ruber C100, and M. aurantiacus M15, were selected as research objects according to the diversification of their pigments fermented in the same mediums and conditions. Twenty-three 3kbp segments (300bp overlap with adjacent segments) of the pigment gene cluster were amplified, sequenced, and assembled into the DNA sequences of the clusters. The DNA sequences of pigment biosynthetic gene clusters of the four strains showed 99.94% similarity according to the results of multiple alignment. The expression levels of 17 pigment biosynthetic genes of four strains were determined by using real-time quantitative PCR. The transcriptional regulation contributed more than the DNA sequence variation in Monascus pigments metabolism. Our result gives insight into the study of Monascus pigment biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call