Abstract
BackgroundIn eukaryotic genomes, about 10% of genes are arranged in a head-to-head (H2H) orientation, and the distance between the transcription start sites of each gene pair is closer than 1 kb. Two genes in an H2H pair are prone to co-express and co-function. There have been many studies on bidirectional promoters. However, the mechanism by which H2H genes are regulated at the transcriptional level still needs further clarification, especially with regard to the co-regulation of H2H pairs. In this study, we first used the Hi-C data of chromatin linkages to identify spatially interacting H2H pairs, and then integrated ChIP-seq data to compare H2H gene pairs with and without evidence of spatial interactions in terms of their binding transcription factors (TFs). Using ChIP-seq and DNase-seq data, histones and DNase associated with H2H pairs were identified. Furthermore, we looked into the connections between H2H genes in a human co-expression network.ResultsWe found that i) Similar to the behaviour of two genes within an H2H pair (intra-H2H pair), a gene pair involving two distinct H2H pairs (inter-H2H pair) which interact with each other spatially, share common transcription factors (TFs); ii) TFs of intra- and inter-H2H pairs are distributed differently. Factors such as HEY1, GABP, Sin3Ak-20, POL2, E2F6, and c-MYC are essential for the bidirectional transcription of intra-H2H pairs; while factors like CTCF, BDP1, GATA2, RAD21, and POL3 play important roles in coherently regulating inter-H2H pairs; iii) H2H gene blocks are enriched with hypersensitive DNase and modified histones, which participate in active transcriptions; and iv) H2H genes tend to be highly connected compared with non-H2H genes in the human co-expression network.ConclusionsOur findings shed new light on the mechanism of the transcriptional regulation of H2H genes through their linear and spatial interactions. For intra-H2H gene pairs, transcription factors regulate their transcriptions through bidirectional promoters, whereas for inter-H2H gene pairs, transcription factors are likely to regulate their activities depending on the spatial interaction of H2H gene pairs. In this way, two distinctive groups of transcription factors mediate intra- and inter-H2H gene transcriptions respectively, resulting in a highly compact gene regulatory network.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-519) contains supplementary material, which is available to authorized users.
Highlights
In eukaryotic genomes, about 10% of genes are arranged in a head-to-head (H2H) orientation, and the distance between the transcription start sites of each gene pair is closer than 1 kb
Characterization of Transcriptional factor (TF) for intra-H2H gene pairs In this study, there were 1447 Human H2H pairs in DBH2H in total [9] and 45 transcription factors are available by using the public ChIP-seq data in the K562 cell line
Overrepresented transcription factors such as GABP, POL2, E2F6, E2F4 and c-MYC have been reported in previous studies [4], and transcription factors like HEY1, SIN3AK-20 and SRF were first discovered in our study
Summary
About 10% of genes are arranged in a head-to-head (H2H) orientation, and the distance between the transcription start sites of each gene pair is closer than 1 kb. We first used the Hi-C data of chromatin linkages to identify spatially interacting H2H pairs, and integrated ChIP-seq data to compare H2H gene pairs with and without evidence of spatial interactions in terms of their binding transcription factors (TFs). More than 10% of human adjacent protein-coding genes are divergently transcribed with their transcription start sites (TSSs) at a distance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.