Abstract

BackgroundDespite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity.ResultsIn order to identify genes that are differentially expressed in the SAM, we generated 2735 ESTs from three cDNA libraries derived from freshly micro-dissected SAMs from 10-day-old garden peas (Pisum sativum cv Torsdag). Custom-designed oligonucleotide arrays were used to compare the transcriptional profiles of pea SAMs and non-meristematic tissues. A total of 184 and 175 transcripts were significantly up- or down-regulated in the pea SAM, respectively. As expected, close to 61% of the transcripts down-regulated in the SAM were found in the public database, whereas sequences from the same source only comprised 12% of the genes that were expressed at higher levels in the SAM. This highlights the under-representation of transcripts from the meristematic tissues in the current public pea protein database, and demonstrates the utility of our SAM EST collection as an essential genetic resource for revealing further information on the regulation of this developmental process. In addition to unknowns, many of the up-regulated transcripts are known to encode products associated with cell division and proliferation, epigenetic regulation, auxin-mediated responses and microRNA regulation.ConclusionThe presented data provide a picture of the transcriptional profile of the pea SAM, and reveal possible roles of differentially expressed transcripts in meristem function and maintenance.

Highlights

  • Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited

  • The potential to develop new organs post-embryonically is attributed to meristems located at the growing tips of the plants, with the root apical meristem generating the underground part of the plant and the shoot apical meristem (SAM) giving rise to the entire shoot system after seed germination

  • The SAM contains a pool of pluripotent stem cells that can self-maintain as well as produce the cells that can differentiate into multiple cell and tissue types [reviewed in [1]]

Read more

Summary

Introduction

Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. The SAM contains a pool of pluripotent stem cells that can self-maintain as well as produce the cells that can differentiate into multiple cell and tissue types [reviewed in [1]]. While lateral organs such as the leaves are initiated from the peripheral regions of the SAM, the basal regions of the SAM contribute to the formation of the stem. This is generally attributed to an active process of communication among neighbouring SAM cells in the microenvironment of the stem cells [2,3,4]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.