Abstract

BackgroundExposure of macrophages to bacterial products such as lipopolysaccharide (LPS) results in activation of the NF-κB transcription factor, which orchestrates a gene expression programme that underpins the macrophage-dependent immune response. These changes include the induction or repression of a wide range of genes that regulate inflammation, cell proliferation, migration and cell survival. This process is tightly regulated and loss of control is associated with conditions such as septic shock, inflammatory diseases and cancer. To study this response, it is important to have in vitro model systems that reflect the behaviour of cells in vivo. In addition, it is necessary to understand the natural differences that can occur between individuals. In this report, we have investigated and compared the LPS response in macrophage derived cell lines and peripheral blood mononuclear cell (PBMC) derived macrophages.ResultsGene expression profiles were determined following LPS treatment of THP-1 cells for 1 and 4 hours. LPS significantly induced or repressed 72 out of 465 genes selected as being known or putative NF-κB target genes, which exhibited 4 temporal patterns of expression. Results for 34 of these genes, including several genes not previously identified as LPS target genes, were validated using real time PCR. A high correlation between microarray and real time PCR data was found. Significantly, the LPS induced expression profile of THP-1 cells, as determined using real time PCR, was found to be very similar to that of human PBMC derived macrophages. Interestingly, some differences were observed in the LPS response between the two donor PBMC macrophage populations. Surprisingly, we found that the LPS response in U937 cells was dramatically different to both THP-1 and PBMC derived macrophages.ConclusionThis study revealed a dynamic and diverse transcriptional response to LPS in macrophages, involving both the induction and repression of gene expression in a time dependent manner. Moreover, we demonstrated that the LPS induced transcriptional response in the THP-1 cell line is very similar to primary PBMC derived macrophages. Therefore, THP-1 cells represent a good model system for studying the mechanisms of LPS and NF-κB dependent gene expression.

Highlights

  • Exposure of macrophages to bacterial products such as lipopolysaccharide (LPS) results in activation of the nuclear factor κB (NF-κB) transcription factor, which orchestrates a gene expression programme that underpins the macrophage-dependent immune response

  • Binding of LPS to toll-like receptor 4 (TLR4) activates two principal signalling pathways, distinguished by their dependence on the adaptor molecules myeloid differentiation factor 88 (MyD88) or TIR-domain-containing adaptor inducing IFN-β (TRIF) [6,7,8,9,10]. Both the Myd88 and TRIF pathways result in activation of the transcription factor, nuclear factor κB (NF-κB), a central regulator of the LPS, cytokine and stress responses in many cell types, including macrophages [8,9]

  • This analysis allowed us to conclude that THP-1 cells provide a much better model system for evaluating the LPS response in macrophages than U937 cells: relatively few differences were observed between THP-1 cells and primary macrophages

Read more

Summary

Introduction

Exposure of macrophages to bacterial products such as lipopolysaccharide (LPS) results in activation of the NF-κB transcription factor, which orchestrates a gene expression programme that underpins the macrophage-dependent immune response These changes include the induction or repression of a wide range of genes that regulate inflammation, cell proliferation, migration and cell survival. Binding of LPS to toll-like receptor 4 (TLR4) activates two principal signalling pathways, distinguished by their dependence on the adaptor molecules myeloid differentiation factor 88 (MyD88) or TIR-domain-containing adaptor inducing IFN-β (TRIF) [6,7,8,9,10] Both the Myd and TRIF pathways result in activation of the transcription factor, nuclear factor κB (NF-κB), a central regulator of the LPS, cytokine and stress responses in many cell types, including macrophages [8,9]. Differential signalling through MyD88 and TRIF results at least in part from the engagement of distinct downstream signalling proteins [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call