Abstract
Staphylococcus aureus is a gram-positive bacterium that is part of the normal healthy flora but that can become virulent and cause infections by producing biofilms and toxins. The production of virulence factors is regulated by cell-cell communication (quorum sensing) through the histidine phosphorylation of target of RNAIII-activating protein (TRAP), which is a 21-kDa protein that is highly conserved among staphylococci. Using microarray analysis, we show here that the expression and phosphorylation of TRAP upregulate the expression of most, if not all, toxins known to date, as well as their global regulator agr. In addition, we show here that the expression and phosphorylation of TRAP are also necessary for the expression of genes known to be necessary for the survival of the bacteria in a biofilm, like arc, pyr, and ure. TRAP is thus demonstrated to be a master regulator of staphylococcal pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.