Abstract

BackgroundColostrum and milk are essential sources of antibodies and nutrients for the neonate, playing a key role in their survival and growth. Slight abnormalities in the timing of colostrogenesis/lactogenesis potentially threaten piglet survival. To further delineate the genes and transcription regulators implicated in the control of the transition from colostrogenesis to lactogenesis, we applied RNA-seq analysis of swine mammary gland tissue from late-gestation to farrowing. Three 2nd parity sows were used for mammary tissue biopsies on days 14, 10, 6 and 2 before (−) parturition and on day 1 after (+) parturition. A total of 15 mRNA libraries were sequenced on a HiSeq2500 (Illumina Inc.). The Dynamic Impact Approach and the Ingenuity Pathway Analysis were used for pathway analysis and gene network analysis, respectively.ResultsA large number of differentially expressed genes were detected very close to parturition (−2d) and at farrowing (+ 1d). The results reflect the extraordinary metabolic changes in the swine mammary gland once it enters into the crucial phases of lactogenesis and underscore a strong transcriptional component in the control of colostrogenesis. There was marked upregulation of genes involved in synthesis of colostrum and main milk components (i.e. proteins, fat, lactose and antimicrobial factors) with a pivotal role of CSN1S2, LALBA, WAP, SAA2, and BTN1A1. The sustained activation of transcription regulators such as SREBP1 and XBP1 suggested they help coordinate these adaptations.ConclusionsOverall, the precise timing for the transition from colostrogenesis to lactogenesis in swine mammary gland remains uncharacterized. However, our transcriptomic data support the hypothesis that the transition occurs before parturition. This is likely attributable to upregulation of a wide array of genes including those involved in ‘Protein and Carbohydrate Metabolism’, ‘Immune System’, ‘Lipid Metabolism’, ‘PPAR signaling pathway’ and ‘Prolactin signaling pathway’ along with the activation of transcription regulators controlling lipid synthesis and endoplasmic reticulum biogenesis and stress response.

Highlights

  • Colostrum and milk are essential sources of antibodies and nutrients for the neonate, playing a key role in their survival and growth

  • Lactogenesis is further subdivided in two stages: lactogenesis I, which occurs in latepregnancy and is linked to the synthesis of early milk components and to final structural mammary gland (MG) differentiation; and lactogenesis II, which is characterized by the onset of abundant milk secretion [21]

  • It is accepted that colostrum production takes place during lactogenesis I and that the transition from colostrum to mature milk occurs within 48 h after parturition, influenced by suckling piglets whose effect enhances the rate of fat secretion and accelerates the increase in lactose concentrations [21]

Read more

Summary

Introduction

Colostrum and milk are essential sources of antibodies and nutrients for the neonate, playing a key role in their survival and growth. To further delineate the genes and transcription regulators implicated in the control of the transition from colostrogenesis to lactogenesis, we applied RNA-seq analysis of swine mammary gland tissue from late-gestation to farrowing. Longitudinal transcriptomic studies are ideally-suited for unravelling complex biological behavior at a genome-wide level and provide a more detailed view of the underlying physiological adaptations [5]. In this regard, the development of high-throughput technologies has revolutionized transcriptome analysis. Previous studies using microarrays have provided some preliminary insights into the differential expression of genes (DEG) in sow mammary glands around farrowing [10], our understanding of metabolic or signaling pathways in this species is still limited

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call