Abstract

Cardiomyocytes are the chief cell type in the heart, and are central to the pathogenesis of many cardiac diseases. Increasing recognition of its cellular, molecular, and functional heterogeneity prompted us to review the latest advancements in cardiac health and disease at single-cell resolution. Single-cell RNA profiling of cardiac lineage commitment events uncovered immense heterogeneity amongst ostensibly homogeneous cell populations. Classic cardiac transcription factors and new regulatory genes exhibit cell subtype-specific and temporally controlled expression patterns that serve the phenotypic changes in development, disease progression, and regeneration. Dissection of dynamically changing cell-cell communications and cardiac cell plasticity offers new opportunities in disease intervention and cardiac repair. Finally, updates in research models, platforms, and pipelines are continuously increasing the efficiency and reliability in data generation and interpretation. Transcriptional profiling of cardiac lineage cells, especially cardiomyocytes, has tremendously enriched our knowledge of the cellular milieu and the transcriptional network in the heart. Implementing technical standards and interrogating underexplored research areas will further our understanding of this organ and increase the likelihood of finding tractable therapeutic targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call