Abstract

Understanding plant resistance mechanisms at a molecular level would provide valuable insights into the biological pathways impacted by insect feeding, and help explain specific plant tolerance mechanisms. As a first step in this process, we conducted next-generation sequencing using RNA extracted from chinch bug-tolerant and -susceptible buffalograss genotypes at 7 and 14 d after chinch bug feeding. Sequence descriptions and gene ontology terms were assigned to 1,701 differentially expressed genes. Defense-related transcripts were differentially expressed within the chinch bug-tolerant buffalograss, Prestige, and susceptible buffalograss, 378. Interestingly, four peroxidase transcripts had higher basal expression in tolerant control plants compared with susceptible control plants. Defense-related transcripts, including two peroxidase genes, two catalase genes, several cytochrome P450 transcripts, a glutathione s-transferase, and a WRKY gene were upregulated within the Prestige transcriptome in response to chinch bug feeding. The majority of observed transcripts with oxidoreductase activity, including nine peroxidase genes and a catalase gene, were downregulated in 378 in response to initial chinch bug feeding. The observed difference in transcript expression between these two buffalograss genotypes provides insight into the mechanism(s) of resistance, specifically buffalograss tolerance to chinch bug feeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.