Abstract

The androgen-regulated protein androgen-induced bZIP (AIbZIP) is a bZIP transcription factor that localizes to the membrane of the endoplasmic reticulum (ER). The physiological role of AIbZIP is unknown, but other ER-bound transcription factors such as ATF6 and SREBPs play a crucial role in the regulation of protein processing and lipid synthesis, respectively. In response to alterations in the intracellular milieu, ATF6 and SREBPs are processed to their transcriptionally active forms by regulated intramembrane proteolysis. In humans, AIbZIP mRNA is expressed in several organs including the pancreas, liver, and gonads, but it is especially abundant in prostate epithelial cells. We therefore used LNCaP human prostate cancer cells as a model to identify stimuli that lead to AIbZIP activation and define the transcriptional targets of AIbZIP. In LNCaP cells, AIbZIP was processed to its transcriptionally active form by drugs that deplete ER calcium stores (i.e., A23187 and caffeine), but it was unaffected by an inhibitor of protein glycosylation (tunicamycin). To identify AIbZIP-regulated genes, we generated LNCaP cell lines that conditionally express the processed form of AIbZIP and used Affymetrix microarrays to screen for AIbZIP-regulated transcripts. Selected genes (n = 48) were validated by Northern blot hybridization. The results reveal that the downstream targets of AIbZIP include genes that are implicated in protein processing (e.g., BAG3, DNAJC12, KDELR3). Strikingly, a large number of AIbZIP-regulated transcripts encode proteins that are involved in transcriptional regulation, small molecule transport, signal transduction, and metabolism. These results suggest that AIbZIP plays a novel role in cell homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.