Abstract

Understanding multicellular fungal structures is important for designing better strategies against human fungal pathogens. For example, the ability to form multicellular biofilms is a key virulence property of the yeast Candida albicans. C. albicans biofilms form on indwelling medical devices and are drug resistant, causing serious infections in hospital settings. Multicellular fungal communities are heterogeneous, consisting of cells experiencing different environments. Heterogeneity is likely important for the phenotypic characteristics of communities, yet it is poorly understood. Here we used colonies of the yeast Saccharomyces cerevisiae as a model fungal multicellular structure. We fractionated the outside colony layers from the cells in the center by FACS, using a Cit1-GFP marker expressed exclusively on the outside. Transcriptomics analysis of the two subpopulations revealed that the outside colony layers are actively growing by fermentative metabolism, while the cells residing on the inside are in a resting state and experience changes to mitochondrial activity. Our data shows several parallels with C. albicans biofilms providing insight into the contributions of heterogeneity to biofilm phenotypes. Hallmarks of C. albicans biofilms – the expression of ribosome and translation functions and activation of glycolysis and ergosterol biosynthesis occur on the outside of colonies, while expression of genes associates with sulfur assimilation is observed in the colony center. Cell wall restructuring occurs in biofilms, and cell wall functions are enriched in both fractions: the outside cells display enrichment of cell wall biosynthesis enzymes and cell wall proteins, while the inside cells express cell wall degrading enzymes. Our study also suggests that noncoding transcription and posttranscriptional mRNA regulation play important roles during growth of yeast in colonies, setting the scene for investigating these pathways in the development of multicellular fungal communities.

Highlights

  • Unicellular yeasts can associate into multicellular structures such as colonies, flocs, flors, stalks, mats and biofilms [1,2]

  • The expression of Ato1-GFP in the outside colony layers coincides with a fully differentiated colony, which is in ammonia-producing phase [10]

  • The outside cells displayed higher levels of genes required for ribosome biogenesis and expressed enzymes required for the fermentation of glucose, suggesting active fermentative growth

Read more

Summary

Introduction

Unicellular yeasts can associate into multicellular structures such as colonies, flocs, flors, stalks, mats and biofilms [1,2]. C. albicans forms biofilms on indwelling medical devices, and these structures are resistant to antifungal treatments [1,2,3]. This makes biofilm-related infections very difficult to treat, resulting in high mortality rates [2,3]. Transcriptome profiling of S. cerevisiae colonies and biofilms of Candida species revealed that cells growing as a multicellular community display gene expression profiles distinct from single cells growing in liquid media, with one of the main features being metabolic reprogramming [6,7,8,9,10,11,12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call