Abstract

Vitamin D is a steroid hormone that, in addition to its well-characterized role in calcium/phosphate metabolism, has been found to have regulatory properties for immune system function. The nuclear vitamin D receptor is widely expressed in tissues, but has also been shown to be regulated by hormones, growth factors, and cytokines. In this study we show that activation of human Vdelta2Vgamma9 T cells by nonpeptidic monoalkyl phosphates such as isopentenyl pyrophosphate leads to the up-regulation of the vitamin D receptor via a pathway that involves the classical isoforms of protein kinase C. We further show that this receptor is active by demonstrating that the ligand 1alpha,25-dihydroxyvitamin D3 (vitD3) significantly inhibits in a dose-dependent fashion phospholigand-induced gammadelta T cell expansion, IFN-gamma production, and CD25 expression. We also show that vitD3 negatively regulates signaling via Akt and ERK and, at high concentrations, potentiates Ag-induced cell death. As such, these data provide further support for the immunoregulatory properties of vitamin D, and suggest that the ability of vitD3 to negatively regulate the proinflammatory activity of gammadelta T cells may contribute to the protection this vitamin affords against inflammatory and autoimmune disorders dependent upon Th1-type responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call