Abstract

Aflatoxin contamination caused by the opportunistic pathogen A. flavus is a major concern in maize production prior to harvest and through storage. Previous studies have highlighted the constitutive production of proteins involved in maize kernel resistance against A. flavus’ infection. However, little is known about induced resistance nor about defense gene expression and regulation in kernels. In this study, maize oligonucleotide arrays and a pair of closely-related maize lines varying in aflatoxin accumulation were used to reveal the gene expression network in imbibed mature kernels in response to A. flavus’ challenge. Inoculated kernels were incubated 72 h via the laboratory-based Kernel Screening Assay (KSA), which highlights kernel responses to fungal challenge. Gene expression profiling detected 6955 genes in resistant and 6565 genes in susceptible controls; 214 genes induced in resistant and 2159 genes induced in susceptible inoculated kernels. Defense related and regulation related genes were identified in both treatments. Comparisons between the resistant and susceptible lines indicate differences in the gene expression network which may enhance our understanding of the maize-A. flavus interaction.

Highlights

  • Aspergillus flavus is a saprophytic fungus, but an opportunistic pathogen which invades susceptible hosts such as maize, cottonseed, tree nuts, and peanuts [1]

  • Aflatoxin contamination caused by A. flavus is a major concern in maize production prior to harvest and through storage [2,3,4]

  • Understanding the molecular mechanisms involved in the interaction between A. flavus and maize kernels would aid the development of strategies to interrupt the aflatoxin contamination process

Read more

Summary

Introduction

Aspergillus flavus is a saprophytic fungus, but an opportunistic pathogen which invades susceptible hosts such as maize, cottonseed, tree nuts, and peanuts [1]. Aflatoxin contamination caused by A. flavus is a major concern in maize production prior to harvest and through storage [2,3,4]. Understanding the molecular mechanisms involved in the interaction between A. flavus and maize kernels would aid the development of strategies to interrupt the aflatoxin contamination process. The morphological process and the molecular mechanisms of A. flavus involved in maize kernel invasion have been widely observed and discussed [8]. Numerous fungal genes have been shown to be involved in the invasion process and in aflatoxins biosynthesis [9,10]. Identifying genetic resistance mechanisms in maize kernels of aflatoxin-resistant lines, and under varied environmental conditions, can be very challenging. To control the environmental effects, better ascertain kernel genetic differences between genotypes and assist field screening in maize breeding, the laboratory-based Kernel

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.