Abstract
This research endeavored to elucidate the transcriptional modulation of heat shock proteins and adipogenic regulators in bovine subcutaneous adipocytes following thermal exposure. Post-differentiation, mature adipocytes were subjected to three treatments of control (CON), moderate (MHS), and extreme (EHS) heat stress. These treatments consist of thermal conditions at temperatures of 38 °C (CON), 39.5 °C (MHS), or 41 °C (EHS) along with of 3 or 12 h. There was no statistically significant variations observed in the gene expressions of HSP27 and HSP70 when comparing CON with MHS across both exposures. Contrastingly, when comparing CON with EHS, an upregulation (P < 0.01) in HSP27 gene expression was evident for both 3 and 12 h of incubation, while HSP70 gene expression exhibited elevation (P < 0.01) at the 3-h mark, with no change observed at 12 h. Protein quantification, however, revealed an elevation (P < 0.01) in HSP27 and HSP70 for both CON vs. MHS and CON vs. EHS at the 12-h exposure. This trend in protein level mirrored (P < 0.05) that of proliferator-activated receptor-gamma (PPARγ). Elevated (P < 0.05) protein levels of fatty acid synthase (FAS) were exclusively discernible in the CON vs. MHS. Increased (P < 0.01) transcriptional activity of PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα), stearoyl-CoA desaturase (SCD), and FAS was evident in the CON vs. EHS comparison. Complementary to these molecular findings, an augmented lipid droplet accumulation was observed (P < 0.01) in EHS-exposed adipocytes progressively from day 6 through day 9. Our current study highlights how different levels and lengths of heat stress can impact the activity of important heat-related proteins and factors that play a role in fat development in beef cattle. These findings can help guide strategies to manage how beef cattle are exposed to heat, which can affect fat storage and ultimately the quality of the meat's marbling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.