Abstract

BackgroundIntra-tumour heterogeneity (ITH) causes diagnostic challenges and increases the risk for disease recurrence. Quantification of ITH is challenging and has not been demonstrated in large studies. It has previously been shown that deep learning can enable spatially resolved prediction of molecular phenotypes from digital histopathology whole slide images (WSIs). Here we propose a novel method (Deep-ITH) to predict and measure ITH, and we evaluate its prognostic performance in breast cancer. MethodsDeep convolutional neural networks were used to spatially predict gene-expression (PAM50 set) from WSIs. For each predicted transcript, 12 measures of heterogeneity were extracted in the training data set (N = 931). A prognostic score to dichotomise patients into Deep-ITH low- and high-risk groups was established using an elastic-net regularised Cox proportional hazards model (recurrence-free survival). Prognostic performance was evaluated in two independent data sets: SöS-BC-1 (N = 1358) and SCAN-B-Lund (N = 1262). ResultsWe observed an increase in risk of recurrence in the high-risk group with hazard ratio (HR) 2.11 (95%CI:1.22–3.60; p = 0.007) using nested cross-validation. Subgroup analyses confirmed the prognostic performance in oestrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative, grade 3, and large tumour subgroups. The prognostic value was confirmed in the independent SöS-BC-1 cohort (HR=1.84; 95%CI:1.03–3.3; p = 3.99 ×10−2). In the other external cohort, significant HR was observed in the subgroup of histological grade 2 patients, as well as in the subgroup of patients with small tumours (<20 mm). ConclusionWe developed a novel method for an automated, scalable, and cost-efficient measure of ITH from WSIs that provides independent prognostic value for breast cancer. SignificanceTranscriptional ITH predicted by deep learning models enables prediction of patient survival from routine histopathology WSIs in breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.