Abstract

BackgroundDisease progression in the absence of therapy varies significantly in mono-HIV and HCV infected individuals. Virus-specific CD8+ T cells play an important role in restricting lentiviral replication and determining the rate of disease progression during HIV and HCV mono- and co-infection. Thus, understanding the similarities in the characteristics of CD8+ T cells in mono-HIV and HCV infection at the transcriptomic level contributes to the development of antiviral therapy. In this study, a meta-analysis of CD8+ T cell gene expression profiles derived from mono-HIV and HCV infected individuals at different stages of disease progression, was conducted to understand the common changes experienced by CD8+ T cells.MethodsFive microarray datasets, reporting CD8+ T cell mRNA expression of the mono-HIV and HCV infected patients, were retrieved from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified via integrative meta-analysis of expression data (INMEX) program. Network analysis methods were used to assess protein–protein interaction (PPI) networks, Gene Ontology (GO) terms and pathway enrichment for DEGs. MirDIP and miRDB online prediction tools were used to predict potential microRNAs (miRNAs) targeting hub genes.ResultsFirst, we identified 625 and 154 DEGs in the CD8+ T cells originating from mono-HIV and HCV chronic progressor patients, respectively, compared to healthy individuals. Among them, interferon-stimulated genes (ISGs) including ISG15, IFIT3, ILI44L, CXCL8, FPR1 and TLR2, were upregulated after mono-HIV and HCV infection. Pathway enrichment analysis of DEGs showed that the “cytokine–cytokine receptor interaction” and “NF-kappa B” signaling pathways were upregulated after mono-HIV and HCV infection. In addition, we identified 92 and 50 DEGs in the CD8+ T cells of HIV non-progressor and HCV resolver patients, respectively, compared with corresponding chronic progressors. We observed attenuated mitosis and reduced ISG expression in HIV non-progressors and HCV resolvers compared with the corresponding chronic progressors. Finally, we identified miRNA-143-3p, predicted to target both IFIT3 in HIV and STAT5A in HCV infection.ConclusionsWe identified DEGs and transcriptional patterns in mono-HIV and HCV infected individuals at different stages of disease progression and identified miRNA-143-3p with potential to intervene disease progression, which provides a new strategy for developing targeted therapies.

Highlights

  • Disease progression in the absence of therapy varies significantly in mono-human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infected individuals

  • Differentially expressed genes (DEGs) in the ­CD8+ T cells of mono‐HIV and HCV chronic progressors compared with healthy donors Firstly, we identified the DEGs in the ­CD8+ T cells of mono-HIV and HCV chronic progressors, compared to healthy donors

  • protein–protein interaction (PPI) network analysis of DEGs in the ­CD8+ T cells of mono‐HIV and HCV chronic progressors compared with healthy donors we performed PPI network analysis of DEGs in the ­CD8+ T cell of mono-HIV and HCV chronic progressors compared with healthy donors, to identify the hub nodes

Read more

Summary

Introduction

Disease progression in the absence of therapy varies significantly in mono-HIV and HCV infected individuals. A meta-analysis of ­CD8+ T cell gene expression profiles derived from mono-HIV and HCV infected individuals at different stages of disease progression, was conducted to understand the common changes experienced by ­CD8+ T cells. Both human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infection are caused by small, highly mutable, rapidly replicating RNA viruses with the ability to establish long-term chronic pathogenic infection in human hosts. Since HIV infection is often complicated by co-infection with HCV [7], understanding the common characteristics of the immune response in mono-HIV and HCV infection may contribute to the development of more effective therapies, aimed at mono- and co-infected individuals

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.