Abstract

Expression of the class A macrophage scavenger receptor (MSR) contributes to the uptake of modified low density lipoproteins (LDL) by macrophages and transformation of these cells into lipid-laden foam cells, which characterize atherosclerosis. Many environmental factors, in particular, proinflammatory cytokines and growth factors, can exert regulatory effects on MSR expression, whereas intracellular accumulation of cholesterol itself does not influence MSR levels to any considerable extent. In the present study, by using an in vitro model, we examined whether stimulation with interleukin-6 (IL-6), an immunoregulatory, multipotential cytokine, modulates the expression and activities of the MSR in macrophages. When treated with IL-6, macrophages derived from peripheral monocytes and phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 monocytic cells showed significantly reduced uptake and/or binding of the MSR ligand, acetylated LDL. This effect was paralleled by a reduction in the expression of MSR protein and mRNA. Analysis of MSR promoter activity in THP-1 cells transfected with an MSR promoter-reporter gene construct demonstrated decreased activity of the MSR promoter in IL-6-treated THP-1 macrophages. Electrophoretic mobility gel shift assay also showed a reduction in the binding of a transcription factor to the MSR promoter AP-1/ets elements in IL-6-treated cells. Thus, exposure to IL-6 may inhibit expression of the class A MSR in differentiated macrophages at transcriptional levels. This result suggests that this cytokine may modulate foam cell formation during atherogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.