Abstract

The phenotype of Down syndrome, trisomy of chromosome 21, is hypothesized to be produced by the increased expression due to gene dosage of normal chromosome 21 genes. Chromosome 21 encodes a number of proteins that, based on experimental evidence or domain composition, are classed as transcription factors or their co-regulators. Other chromosome 21 proteins contribute to post-translational modification of transcription factors, including their phosphorylation, dephosphorylation and sumoylation. Several of these chromosome 21 proteins and the pathways in which they function have overlapping transcription factor specificities. Thus, altered stoichiometry in complexes and altered levels of activation of individual transcription factors may contribute to the Down syndrome phenotype by perturbation of downstream gene expression. Here we review recent data on four chromosome 21 proteins: NRIP1, GABPA, DYRK1A and SUMO3. We discuss the implications for activation of ELK, CREB, C/EBP alpha, beta estrogen and glucocorticoid receptors, and for expression of BDNF. Each of these proteins is relevant to learning, behavior and/or development and therefore perturbation of their activation may contribute to the Down syndrome phenotype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.