Abstract

The worldwide epidemic of obesity has increased the urgency of developing a deeper understanding of physiological systems related to energy balance and energy storage, including the mechanisms controlling the development of fat cells (adipocytes). The differentiation of committed preadipocytes to adipocytes is controlled by PPARγ and several other transcription factors 1, but the molecular basis for preadipocyte determination is not understood. Using a novel method for the quantitative analysis of transcriptional components, we identified the zinc-finger protein Zfp423 as a factor enriched in preadipose versus non-preadipose fibroblasts. Ectopic expression of Zfp423 in non-adipogenic NIH 3T3 fibroblasts robustly activates expression of PPARγ in undifferentiated cells and permits cells to undergo adipocyte differentiation under permissive conditions. ShRNA-mediated reduction of Zfp423 expression in 3T3-L1 cells blunts preadipocyte PPARγ expression and diminishes the ability of these cells to differentiate. Furthermore, both brown and white adipocyte differentiation is strikingly impaired in Zfp423-deficient mouse embryos. Zfp423 regulates PPARγ expression, in part, through amplification of the BMP signaling pathway, an effect dependent on the SMAD binding capacity of Zfp423. This study identifies Zfp423 as a transcriptional regulator of preadipocyte determination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.